Home Projects Publications Research Areas Institutional Capacity Join us
MAIN MENU
   Home
   About Us
   Research Areas
    Physical Science Basis
    Impacts, adaptation &      vulnerability
    Mitigation & climate      change policy
   Research Projects
   Publications
   Institutional Capacity
   Pakistan's Climate    Change Concerns and    Vulnerability
 
   Capacity Building and    Awareness raising
 
   Climate Change    Courses
   National    Communications
   SP3C
   NDCs
   Tenders
   Join us
   GCISC Staff
    Research Staff
    Administrative Staff
   Gallery
 
HKH climate projections


Introduction:

The increasing rate of warming is significantly higher in the Hindu Kush Himalayan (HKH) region than the global average in the past century (Duet al 2004). The warming influence is much higher in the Eastern Himalayas compared with the Greater Himalayan region (Sheikh et al 2014). These temperature variations can have a potential impact on water resources of the UIB and the dependent downstream irrigation demand areas, which are of great concern. In HKH region snow melt and glacier melt yield collectively account more than 70% of UIB stream-flows. Most part of HKH lies above 5,000 meters and contains the second-highest peak of K2 mountain i.e. above 8,000meter. Most of the annual precipitation in UIB falls during winter and spring (December-April, DJFMA) due to western disturbances that is eastward propagating synoptic systems embedded into westerly flow (Madhura et al 2014). Whereas the summer monsoon and local circulations only accounts 1/3 of annual precipitation (Young and Hewitt 1990). The climatic conditions of UIB are different from other regions of the country; as the monsoon circulation weakens towards northwest in UIB where high mountains of the Himalaya decrease the effect of monsoon circulation. Although the lower elevation stations do not monitor very high precipitation during both the winter and summer, but in contrast high altitude stations usually recorded much higher precipitation. Previous studies suggested very significant precipitation gradient at high altitudes and even at some parts (>5000 meters) of the basin the annual precipitation exceeds 2000 mm (Mukhopadhyay and Khan 2014). Fowler and Archer (2006), reported an increasing trend in both precipitation and temperature during winter while a cooling in summer temperatures over the past century. The average river flow to Tarbela reservoir at Besham Qila reaches 2425 cumecs (cubic meters per second) with the variation between 80% to 130 % from the mean. There are eight meteorological observatories (Kakul, Garidupatta, Balakot, Astor, Bunji, Skardu, Gilgit, and Gupis) in the study area.

Climate projections:

In RCP8.5, the increase in temperature for 2006–2035 is 2.2 °C, for 2041–2070 it is 4.2 °C, and for 2071–2100 it is 5.8 °C. In RCP4.5 the increase in temperature for 2006–2035 is 0.5 °C, for 2041–2070 it is 1.5 °C, and for 2071–2100 it is 2.0 °C. The increase in minimum temperature is high in both scenarios for all future periods, which is an important parameter for the sustainability and growth of agriculture in the region. Northern parts are more likely to experience an increase in precipitation and temperature in comparison to the southern parts. A higher increase in temperature is projected during spring and winter over southern parts and during summer over northern parts. Moreover, the increase in minimum temperature is larger in both scenarios for all future periods.

The precipitation increase in both scenarios is almost the same while in 2071–2100 the precipitation increase is 12% (decreasing trend in comparison with 2041–2070) in RCP4.5 and 20% in RCP8.5 by 2071–2100.

GCISC References:

Khan, F., Pilz, J., & Shaukat Ali. (2017). Improved hydrological projections and reservoir management in the Upper Indus Basin under the changing climate. Water and Environment Journal.

Mountain Research Initiative EDW Working Group. Muhammad Zia ur Rahman Hashmi (2015). Elevation-dependent warming in mountain regions of the world. Nature Climate Change5(5), 424-430.

Shaukat Ali, Li, D., Congbin, F., & Khan, F. (2015). Twenty first century climatic and hydrological changes over Upper Indus Basin of Himalayan region of Pakistan. Environmental Research Letters, 10(1), 014007.

 

 
 
  • 18 December, 2024

GCISC & SDPI co-organized a Workshop on Developing Inclusive Climate Commitments: NDCs 3.0 for Pakistan at Marriott Hotel, Islamabad.

  • 22 October, 2024

Mr. Muhammad Arif Goheer's appointment as Executive Director of the Global Climate-Change Impact Studies Centre (GCISC) is warmly welcomed by the Centre. Additionally, he will take on the role of Secretary of the GCISC Board of Governors. Under his dynamic leadership, GCISC is expected to reach new milestones.

  • 21 September, 2024

The climate change courses, developed collaboratively by the Potsdam Institute for Climate Impact Research (PIK), Germany, the University of Kassel, Germany, GCISC, and GIZ, have been uploaded on the GCISC website. The details can be found under the "Climate Change Courses" tab.

  • 2 September, 2024

Ms. Aisha Humera Chaudhary's appointment as Secretary of the Ministry of Climate Change and Environmental Coordination is warmly welcomed by the Centre. Additionally, she will take on the role of Vice-Chair of the GCISC Board of Governors. Under her dynamic leadership, GCISC is expected to reach new milestones.

  • 04 April, 2024

The GCISC extends a warm welcome to the Honorable Ms. Romina Khurshid in her new role as the coordinator to the Prime Minister on Climate Change and Environmental Coordination. We are enthusiastic about your dedication to addressing climate change challenges and eagerly anticipate working with your kind support.

GCISC and GIZ jointly organize a workshop to launch National and Provincial Climate Risk Profiles and CLimate Information Resource (CIR) Portal under SAR Project at Ramada Hotel on March 20, 2024.